Topological Duality and Algebraic Completions
نویسنده
چکیده
In this chapter we survey some developments in topological duality theory and the theory of completions for lattices with additional operations paying special attention to various classes of residuated lattices which play a central role in substructural logic. We hope this chapter will serve as an introduction and invitation to these subjects for researchers and students interested in residuated lattices, substructural logics, and the algebraic approach to proof theory developed and promoted in great part by Hiroakira Ono. In honour of Hiroakira Ono
منابع مشابه
p-TOPOLOGICAL CAUCHY COMPLETIONS
The duality between “regular” and “topological” as convergence space properties extends in a natural way to the more general properties “p-regular” and “p-topological.” Since earlier papers have investigated regular,p-regular, and topological Cauchy completions, we hereby initiate a study of p-topological Cauchy completions. A p-topological Cauchy space has a p-topological completion if and onl...
متن کاملSTONE DUALITY FOR R0-ALGEBRAS WITH INTERNAL STATES
$Rsb{0}$-algebras, which were proved to be equivalent to Esteva and Godo's NM-algebras modelled by Fodor's nilpotent minimum t-norm, are the equivalent algebraic semantics of the left-continuous t-norm based fuzzy logic firstly introduced by Guo-jun Wang in the mid 1990s.In this paper, we first establish a Stone duality for the category of MV-skeletons of $Rsb{0}$-algebras and the category of t...
متن کاملTopo-canonical completions of closure algebras and Heyting algebras
We introduce and investigate topo-canonical completions of closure algebras and Heyting algebras. We develop a duality theory that is an alternative to Esakia’s duality, describe duals of topo-canonical completions in terms of the Salbany and Banaschewski compactifications, and characterize topo-canonical varieties of closure algebras and Heyting algebras. Consequently, we show that ideal compl...
متن کاملPurity at the end
We consider smooth completion of algebraic manifolds. Having some information about its singular completions or about completions of its images we prove purity of cohohomology of the set at infinity. We deduce also some topological properties. The work is based on the study of perverse direct images for algebraic maps.
متن کاملDistributive Envelopes and Topological Duality for Lattices via Canonical Extensions
We establish a topological duality for bounded lattices. The two main features of our duality are that it generalizes Stone duality for bounded distributive lattices, and that the morphisms on either side are not the standard ones. A positive consequence of the choice of morphisms is that those on the topological side are functional. Towards obtaining the topological duality, we develop a unive...
متن کامل